Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine‐tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure–property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular‐design strategies for isoindigo‐based mixed conductors that can support efficient p‐type, n‐type, and ambipolar transistor operation in an aqueous environment.more » « less
-
Abstract A series of semiconducting small molecules with bithiophene or bis‐3,4‐ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with polar triethylene glycol side chains. Evidence of promising ion injection properties observed with cyclic voltammetry is complemented by strong electrochromism probed by spectroelectrochemistry. Blending these molecules with high molecular weight polyethylene oxide (PEO) is found to improve both ion injection and thin film stability. The molecules and their corresponding PEO blends are investigated as active layers in organic electrochemical transistors (OECTs). For the most promising molecule:polymer blend (P4E4:PEO), p‐type accumulation mode OECTs with µA drain currents, μS peak transconductances, and a µC* figure‐of‐merit value of 0.81 F V−1cm−1s−1are obtained.more » « less
-
Abstract Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side‐products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox‐active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side‐reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high‐performance, state‐of‐the‐art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2O2), a reactive side‐product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox‐active organic semiconductors based on donor–acceptor copolymers that prevents the formation of H2O2during device operation. This study elucidates the previously overlooked side‐reactions between redox‐active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte‐gated devices in application‐relevant environments.more » « less
An official website of the United States government
